Set Recognition Quality and Speed
When working with barcodes in applications, optimizing recognition quality and speed is essential. The RecognitionMode
setting in the Aspose.BarCode.Cloud SDK for Node.js offers a way to adjust these parameters, making it possible to prioritize either quality or speed during barcode recognition.
Recognition Mode Options
The RecognitionMode
parameter can be set to the following values to control the recognition process:
- Fast: Optimizes for speed but may lower the accuracy slightly. Minimal recognition timeout.
- Normal: Balances speed and quality, suitable for most cases. Medium recognition timeout.
- Excellent: Prioritizes accuracy over speed, ideal for challenging barcode images. Maximum recognition timeout.
Usage in API Requests
The RecognizeApi
interface provides methods to recognize barcodes from files using different HTTP request types. Below are the available methods:
recognize
: Recognizes barcode from a file on the server using aGET
request.recognizeBase64
: Recognizes barcode from a file provided in the request body using aPOST
request with JSON or XML format.recognizeMultipart
: Recognizes barcode from a file provided in the request body using aPOST
request withmultipart/form-data
.
Example Implementations
Example 1: Using recognize
const fs = require('fs');
const path = require('path');
const Barcode = require('aspose-barcode-cloud-node');
function makeConfiguration() {
const envToken = process.env['TEST_CONFIGURATION_ACCESS_TOKEN'];
if (!envToken) {
return new Barcode.Configuration(
'Client Id from https://dashboard.aspose.cloud/applications',
'Client Secret from https://dashboard.aspose.cloud/applications',
null,
null
);
} else {
return new Barcode.Configuration(
null,
null,
null,
envToken
);
}
}
async function recognizeBarcode(api, fileUrl) {
const request = new Barcode.RecognizeRequestWrapper(Barcode.DecodeBarcodeType.Qr, fileUrl);
request.recognitionMode = Barcode.RecognitionMode.Fast;
request.imageKind = Barcode.RecognitionImageKind.Photo;
const result = await api.recognize(request);
return result.body.barcodes;
}
const config = makeConfiguration();
const recognizeApi = new Barcode.RecognizeApi(config);
const fileUrl = "https://products.aspose.app/barcode/scan/img/how-to/scan/step2.png";
recognizeBarcode(recognizeApi, fileUrl)
.then(barcodes => {
console.log(`File recognized, result: '${barcodes[0].barcodeValue}'`);
})
.catch(err => {
console.error("Error: " + JSON.stringify(err, null, 2));
process.exitCode = 1;
});
Example 2: Using recognizeBase64
const fs = require('fs');
const path = require('path');
const Barcode = require('aspose-barcode-cloud-node');
function makeConfiguration() {
const envToken = process.env['TEST_CONFIGURATION_ACCESS_TOKEN'];
if (!envToken) {
return new Barcode.Configuration(
'Client Id from https://dashboard.aspose.cloud/applications',
'Client Secret from https://dashboard.aspose.cloud/applications',
null,
null
);
} else {
return new Barcode.Configuration(
null,
null,
null,
envToken
);
}
}
const config = makeConfiguration();
async function recognizeBarcode(api, fileName) {
const imageBytes = fs.readFileSync(fileName);
const imageBase64 = Buffer.from(imageBytes).toString('base64');
const recognizeBase64Request = new Barcode.RecognizeBase64Request();
recognizeBase64Request.barcodeTypes = [Barcode.DecodeBarcodeType.Pdf417];
recognizeBase64Request.fileBase64 = imageBase64;
const RecognizeRequestWrapper = new Barcode.RecognizeBase64RequestWrapper(recognizeBase64Request);
const result = await api.recognizeBase64(RecognizeRequestWrapper);
return result.body.barcodes;
}
const recognizeApi = new Barcode.RecognizeApi(config);
const fileName = path.resolve('testdata','Pdf417.png');
recognizeBarcode(recognizeApi, fileName)
.then(barcodes => {
console.log(`File '${fileName}' recognized, result: '${barcodes[0].barcodeValue}'`);
})
.catch(err => {
console.error("Error: " + JSON.stringify(err, null, 2));
process.exitCode = 1;
});
Example 3: Using recognizeMultipart
const fs = require('fs');
const path = require('path');
const Barcode = require('aspose-barcode-cloud-node');
function makeConfiguration() {
const envToken = process.env['TEST_CONFIGURATION_ACCESS_TOKEN'];
if (!envToken) {
return new Barcode.Configuration(
'Client Id from https://dashboard.aspose.cloud/applications',
'Client Secret from https://dashboard.aspose.cloud/applications',
null,
null
);
} else {
return new Barcode.Configuration(
null,
null,
null,
envToken
);
}
}
const config = makeConfiguration();
async function recognizeBarcode(api, fileName) {
const imageBuffer = fs.readFileSync(fileName);
const RecognizeRequestWrapper = new Barcode.RecognizeMultipartRequestWrapper(
Barcode.DecodeBarcodeType.Aztec,
imageBuffer
);
const result = await api.recognizeMultipart(RecognizeRequestWrapper);
return result.body.barcodes;
}
const recognizeApi = new Barcode.RecognizeApi(config);
const fileName = path.resolve('testdata','aztec.png');
recognizeBarcode(recognizeApi, fileName)
.then(barcodes => {
console.log(`File '${fileName}' recognized, result: '${barcodes[0].barcodeValue}'`);
})
.catch(err => {
console.error("Error: " + JSON.stringify(err, null, 2));
process.exitCode = 1;
});
Conclusion
Choosing the appropriate RecognitionMode
is essential in tailoring barcode recognition to the specific needs of your application. Whether prioritizing speed or accuracy, the examples provided demonstrate how to use the RecognizeApi
interface to adjust settings for optimal performance. By fine-tuning RecognitionMode
and RecognitionImageKind
, you can enhance both efficiency and accuracy, making your barcode processing solution robust across various use cases.